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1. Executive Summary

In this section, we give an executive summary in terms of the testing data, the ontology and 

storyline-based queries, and the objectives, approaches and advantages developed by the team. 

Summary: 

This DARPA MSEE project developed a mathematical foundation for unified representation, 

inference and learning for ISR problems. The result of the project is an end-to-end system for 

scene and event understanding from various inputs. It computes 3D scene-based probabilistic 

spatial-temporal-causal representations for human and object activities, and answers queries via 

“Who, What, Where, When, and How” storylines. The system was 3rd party evaluated and tested 

using a Visual Turing Test (VTT) of 1000+ queries on 100 hours of recorded videos. In the on-

going SIMPLEX project, this system is extended to support robot learning where an agent learns 

the Spatial, Temporal and Causal And-Or Graph (STC-AOG) from human demonstrations and 

refines the learned representation through situated dialogues. We elaborate details of the MSEE 

evaluation protocol in Section 2.1 and the system under test (SUT) developed by the UCLA 

grantee in Section 3 and Section 4.   

Testing Data: A 3rd party company, SIG, collected the multi-modality and multi-scene testing 

data under the DARPA contract. The data collection protocol was reviewed and approved by 

DARPA and Air Force Research Laboratory (AFRL). Figure 1 shows some snapshots of the 

testing data. The data are collected for multiple scenes including office, kitchen, lobby, meeting 

room, auditorium, parking lot area, and garden area across 4 seasons. More than 30 cameras are 

used and the length of recorded videos is about 100 hours. The number and placement of 

cameras were chosen carefully to capture the events and activities from a wide range of angles 

and distances including side views and bird's-eye views (cameras mounted on top of buildings). 

The views of cameras have moderate overlapping similar to typical surveillance settings. Moving 

cameras (hand-hold or mounted on cars/bicycles) are used to capture close-look details of objects, 

actions and events. We elaborate details of the MSEE benchmark in Section 2.2.   

Figure 1. Some snapshots of the MSEE testing data. 
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 Ontology and Storyline-based Queries: We are interested in a selected ontology as listed in 

Figure 2. The ontology is sufficiently expressive to represent different aspects of spatial, 

temporal, and causal understanding in videos from basic level (e.g., identifying objects and parts) 

to fine-grained level (e.g., does person A have a clear-line-of-sight to person B?). Based on the 

ontology, we build a toolkit for collecting storyline-based queries and grounding annotations for 

each predicates. Queries organized in multiple storylines are designed to evaluate a computer 

vision system from basic object detection queries to more complex relationship queries, and 

further probe the system's ability in reasoning from the physical and social perspectives, which 

entails human-like commonsense reasoning. Cross-camera referencing queries require the ability 

to integrate visual signals from multiple overlapping sensors. Queries are stored in XML format. 

We elaborate details of the MSEE benchmark in Section 2.3.   

MSEE Objective, Approach and Advantages: Understanding video content consists of 

recognizing visible visual patterns and inferring hidden information (so called “dark matter”), 

where the former has been addressed well in the computer vision and machine learning literature 

Figure 2. The table of MSEE ontology for deep understanding of scene and events in videos. 
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and latter still suffers from the lack of mathematically sound models and algorithms, as 

illustrated in Figure 3.  The objective is to develop a unified and mathematically sound 

foundation for closing the gap in Sensing, Exploitation and Execution (SEE). 

We developed a unified representation, the Spatial-Temporal-Causal And-Or Graph (STC-AOG). 

The STC-AOG is capable of, 

 Supporting joint inference for all tasks in the ontology;

 Providing mutual context across the Spatial-Temporal-Causal dimensions;

 Learning from small training data in weakly supervised ways (e.g. Q/A); and

 Defining sensory concepts in mathematical terms (e.g., what is a chair, hammer, human,

white old male, action, event?)

MSEE focused on spatial-temporal-causal reasoning with semantic hierarchical representation. 

The algorithms and systems are flexible and generalizable, which are designed as white boxes 

rather than black boxes so that the evaluation results can be diagnosed explicitly (as we 

presented the analyses of the results of Phase I, II and II evaluation in previous reports). 

Compared with popular methods in computer vision, our approaches developed during the 

MSEE project have the advantages as-follows: 

MSEE Popular Methods in Computer 

Vision 

Evaluation 3D scene-based relations 2D image-based detection 

Storyline based queries Classification and bounding boxes 

Representation Probabilistic, compositional, generative 

and interpretable  

Convolutional features, 

discriminative and implicit 

Learning Weakly supervised training with small 

datasets 

Supervised training with large-scale 

datasets 

Inference Bottom-up/top-down reasoning Feed forward 

Figure 3. Illustration of the status of video understanding. 
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2. Evaluation Protocol and Benchmark Comparisons

In this section, we introduce the MSEE evaluation protocol – a restricted visual Turing test 

(VTT), and the MSEE benchmark. Briefly comparing with other popular datasets in the 

computer vision and machine learning community, we also show the challenges in the  

benchmark. 

2.1. Evaluation Protocol – a Restricted Visual Turing Test 

During the past decades, we have seen tremendous progress in individual vision modules such as 

image classification and object detection, especially after competitions like PASCAL VOC and 

ImageNet ILSVRC and the convolutional neural networks trained on the ImageNet dataset were 

proposed. Those tasks are evaluated based on either classification or detection accuracy, focusing 

on a coarse level understanding of data. In the area of natural language and text processing, there 

have been well-studied text-based question answering (QA). For example, a chatterbot named 

Eugene Goostman (https://en.wikipedia.org/wiki/Eugene_Goostman) was reported as the first 

computer program which has passed the famed Turing test in an event organized at the 

University of Reading. The success of text-based QA and the recent achievements of individual 

vision modules have inspired visual Turing tests (VTT) where image-based questions (so-called 

visual question answering, VQA) or storyline-based queries are used to test a computer vision 

system. VTT has been suggested as a more suitable evaluation framework in going beyond 

measuring the accuracy of labels and bounding boxes. Most existing work on VTT focus on 

images and emphasize free-form and open-ended QA's.  

In the protocol, we are interested in a restricted visual Turing test setting with storyline-based 

visual query answering in long-term videos. Our scene and event understanding benchmark 

emphasizes a joint spatial, temporal, and causal understanding of scenes and events, which are 

largely unexplored in computer vision. By “restricted”, we mean the queries are designed based 

on a selected ontology (see 

Figure 2). 
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Figure 4. Illustration of depth and complexity of the evaluation benchmark in scene and event 

understanding, which focuses on a largely unexplored task in computer vision -- joint spatial, 

temporal, and causal understanding of scene and event in multi-camera videos over relatively 

long time durations. 

Figure 4 shows two examples in the benchmark. Consider the question how we shall test whether 

a computer vision system understands, for example, a conference room. In our benchmark, to 

understand a conference room, the input consists of multi-camera captured videos and storyline-

based queries covering basic questions (e.g., Q1, for a coarse level understanding) and difficult 

ones (e.g., Qk) involving spatial, temporal, and causal inference for a deeper understanding. 

More specifically, to answer Qk in the office scene correctly, a computer vision system would 

need to build a scene-centered representation for the conference room, to detect, track, re-

identify, and parse people coming into the room across cameras, and to understand the concept 

of sitting in a chair (i.e., the pose of a person and scene-centered spatial relation between a 

person and a chair), etc. The motivation is in three folds as follows. 

 Web-scale images vs. long-term videos. Web-scale images emphasize the breadth that a

computer vision system can learn and handle in different applications. These images are

often of album photo styles collected from different image search engines such as Flickr,

Google, Bing, and Facebook. This paper focuses on long-term, especially multi-camera

captured, videos usually produced by video surveillance, which are also important data

sources in the visual big data epic and have important security or law enforcement
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applications. Furthermore, mutli-camera videos can facilitate a much deeper understanding of 

scenes and events. The two types of datasets are complementary, but the latter has not been 

explored in a QA setting.  

 Free-form and open-ended questions vs. restricted storyline-based queries. In VQA, the

input is an image and a ``bag-of-questions" (e.g., is this a conference room?) and the task is

to provide a natural language answer (either in a multiple-choice manner or with free-form

responses). Free-form and open-ended questions are usually collected through crowd-

sourcing platforms like Amazon Mechanical Turk (MTurk) to achieve diversity. However, it

is hard to obtain well-posed pairs from a massive amount of untrained workers on the

Internet. This is challenging even for simple tasks like image labeling as investigated in the

ImageNet dataset and the Label-Me dataset. Currently, for the queries provided in the three-

phase evaluation of MSEE, SIG adopts a selected yet sufficiently expressive ontology in

generating queries. Following the statistical principles stated in the Turing test framework by

Geman et al., we design an easy-to-use toolkit by which several people with certain expertise

can create a large number of storylines covering different interesting and important spatial,

temporal, and causal aspects in videos with the quality of queries and answers controlled. We

are working on a more sophisticated toolkit and inspection methods to exploit MTurk to scale

up collecting storyline-based queries covering long-term temporal ranges and across multi-

cameras.

 Quest for an integrated vision system. Several methods proposed for image captioning and

VQA are based on the combination of convolutional neural network and recurrent neural

network like long short-term memory. In contrast to end-to-end approaches, in the MSEE

system, we take an explicit approach to build a prototype system which integrates different

vision modules, a knowledge base that manages visual parsing results, and a query engine

that answers queries. The architecture supports symbolic reasoning on results generated by

individual modules. We are interested in whether a computer vision system can further

unfold the intermediate representation to explicitly show how it derives the answer, and if so

it enhances the ``trust'' that we have on the system that it has gain a correct understanding of

the scene.

2.2. Benchmark Challenges and Comparisons 

2.2.1  Benchmark 

In the benchmark, we organize data by multiple independent scenes (see Figure 1). Each scene 

consists of video footage from eight to twelve cameras with overlapping fields of view during 

the same time period. We have a total number of 14 collections covering both indoor and 

outdoor scenarios. Table 1 gives a summary of the dataset collected by SIG. 

MSEE dataset reflects real-world video surveillance data and poses unique challenges to modern 

computer vision algorithms. We briefly summarize some typical challenges as follows. Figure 5 

shows some snapshots (video clips are shown in the power-point report).  

 Varied number of entities. In the dataset, activities in the scene could involve individuals as

well as multiple interacting entities (see Figure 4).
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Table 1. Summary of the Benchmark. 

(a) Heavy Occlusion       (b) Pose Variations 

    (c) Illumination Variations                           (d) Low Resolution and Heavy Shadow 

Figure 5. Illustration of some typical challenges in the dataset (see video clips in the power-point 

report). 

 Rich events and activities. The activities captured in the dataset involve different degrees of

complexities: from the simplest single-person actions to the group sport activities which

involve as many as dozens of people.
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 Unknown action boundary. Unlike existing action or activity dataset where each action

data point is well segmented and each segment only contains one single action, our dataset

consists of multiple video streams. Actions and activities are not pre-segmented and multiple

actions may happen at the same time. Such characteristic preserves more information about

the spatial context of one action and correlation between multiple actions.

 Multiple overlapping cameras. This requires the system to perform multi-object tracking

across multiple cameras with re-identification and 3D geometry reasoning.

 Varied scales and viewpoints. Most of our data are collected in 1920x1080 resolution,

however, because of the difference in cameras' mounting points, a person who only occupies

a couple of hundred pixels in bird's-eye views may occlude the entire view frame when he or

she stands very close to a ground camera.

 Illumination variation. Areas covered by different cameras have different illumination

conditions: some areas are covered by dark shadows whereas some other areas have heavy

reflection.

 Infrared cameras and moving cameras. Apart from regular RGB cameras, MSEE dataset

includes infrared cameras in some scenes as a supplementary (see Figure 1).

 Moving cameras (i.e., cameras mounted on moving objects) also provide additional

challenges to the dataset and reveal more spatial structure of the scene.

2.2.2 Comparisons with Popular Datasets in the Computer Vision Literature 

Conventional datasets are collected for testing individual task. while videos are comprehensive, 

and entail all modules to work together autonomously.  If one module fails, it affects other 

modules.  

(a) 

(b) 

Figure 6. Some examples of person category in (a) PASCAL VOC and (b) ImageNet. 
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We briefly compare with some conventional vision benchmarks (including detection, tracking, 

re-identification, attributes, action and behavior) in the following, showing challenge and 

advantage of the MSEE dataset. 

 Comparison I: Object Detection. In conventional image classification and object detection

benchmarks, images are collected from photo albums, which are usually selected by users

before uploading to the Internet. They are often well centered with good image quality.

Figure 6 shows some examples of person category in two of the most popular vision

benchmark, PASCAL VOC and ImageNet.

 Comparison II: Object Tracking. In comparing with conventional tracking benchmarks, the

MSEE dataset excels in terms of the number of object entities, time range, resolution,

occlusion and pose, as summarized in Table 2. We consider three popular tracking datasets.

In the ETHZ tracking dataset (Figure 7 (a)), only the closest two people are required to track.

There are few occlusions, and the resolution is good. Note that though the whole video has

two minutes, tracking these two people only lasts shorter than 5 seconds. In the TUD

tracking dataset (Figure 7 (b)), the whole video sequence has only 8 people in the sequence.

There are only few occlusions and only three people cross each other. The whole video has

only 1 minute, so there is no need for long-term tracking. In the MSEE dataset, in order to

answer queries, long-term tracking is required.  In this dataset, foreground (yellow) bounding

boxes are given. In the TB-100 dataset (Figure 7 (c)), although there are large scale,

illumination, pose variations and heavy occlusion, the task only requires to track one object

at a time (on which the online And-Or graph tracker developed by the UCLA grantee obtains

state-of-the-art performance, and we will elaborate quantitative results in Section 3).

#Objects Time Range 

(min.) 

Resolution Occlusion Pose 

MSEE 5 ~ 20 5 ~ 45 Large 

variations 

Heavy Large 

variations 

CV 

Benchmarks 

< 10 < 5 Good Few Medium 

Table 2. Tracking comparison between the MSEE dataset and CV benchmarks. 

(a) The ETHZ Datase                  (b) The TUD dataset (c) The TB-100 dataset 

Figure 7. Illustration of three popular tracking datasets. 
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 Comparison III: Object Re-identification across Views. In conventional benchmarks of

person re-identification across views, typical examples are well centered, cameras are from

same angle, as illustrated in the left of Figure 8 (a).  The MSEE dataset (see Figure 8 (b)~(d))

excels in many aspects as listed in Table 3.

#Views View Variation Moving 

Camera 

IR 

Camera 

Pose Working 

flow 

MSEE 4 ~ 8 Both bird’s-eye 

and person’s-eye 

views 

Yes Yes Large 

variation 

2D / 3D 

trajectory 

based 

CV 

Benchmark 

< 5 All person’s-eye 

view 

No No Medium Cropped 

image 

patch based 

Table 3. Person re-identification comparisons between MSEE and other CV benchmarks. 

(a) The VIPeR dataset. (b) MSEE Garden 

(c) MSEE Parking-lot              (d) MSEE Auditorium 

Figure 8. Left: The VIPeR dataset of person re-identification. It consists of 632 persons with 2 

different view images per person. Right: three typical cases in MSEE. In each case, only four 

views are shown for clarity. To identify the same person across these 4 views are challenging, 

because the camera angles and distances are very different.  
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 Comparison IV: Object Attribute. Similarly, we summarize the comparisons in Table. 4. One

of the most popular dataset is the Poselet dataset (see some examples in Figure 9) on which

state-of-the-art performance is obtained by the UCLA grantee. We will elaborate quantitative

results in Section 3.

Figure 9. Some examples in the Poselet attribute dataset. 

Table 4. Object attribute comparisons between MSEE benchmark and Poselet benchmark.  

 Comparison V: Action Recognition. We summarize the comparisons between the MSEE

benchmark and other CV benchmarks in Table 5. Figure 10 shows some examples in a

popular CV benchmark, the Penn Action dataset.

MSEE Poselet Attribute Dataset 

# Attributes 6 (Multi-class) 9 (Binary) 

Data Video Image 

Resolution Large variation All high resolution 

View Large variation Mostly frontal view 

Bounding box Given by detection Ground-truth bounding box is given in 

testing 

Occlusion Heavy Few 

Pose Large variations Medium 

Illumination Large illumination and shadow images are very clear 

Scale Large variations Resized to similar size 
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#Actions View 

variations 

Moving 

camera 

IR 

camera 

Cross 

views 

Working mode 

MSEE 4 ~ 20 Both bird’s-

eye and 

person’s-eye 

views 

Included Included Yes 2D / 3D trajectory 

based (segment issues 

due to variable – length 

of actions) 

CV 

Benchmarks 

1 per 

video 

clip 

Person’s-eye 

or close-

look views 

Not Not No Segmented video clips 

(still a classification 

problem) 

Table 5.  Action recognition comparisons between MSEE benchmark and other CV benchmarks. 

Figure 10. Some examples in the Penn action dataset. 

 Comparison VI: Behavior Recognition. In conventional benchmarks, the task is to classify a

video clip with one behavior label. In MSEE, we need to solve the temporal parsing problem

in segmenting an input long video. We summarize the comparisons in Table. 6. Figure 11

shows some examples in three conventional benchmarks and the MSEE dataset.
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#Behavior View 

variations 

Moving 

camera 

IR 

camera 

Cross 

views 

Working mode 

MSEE 4 ~ 20 Both bird’s-

eye and 

person’s-eye 

views 

Included Included Yes 2D / 3D trajectory 

based (segment issues 

due to variable –length 

of behavior) 

CV 

Benchmarks 

1 per 

video clip 

Either 

person’s-eye 

or bird’s-eye 

views 

Not Not Not Segmented video clips 

Table 6. Comparisons of behavior recognition in the MSEE benchmark and other CV 

benchmarks.  

(a) Examples in the collective activity dataset       (b) Examples in the VIRAT dataset 

(c) Examples in the UT-interaction dataset 

(d) Examples in the office scene in MSEE (Passing, Following, Together). People are occluded 

by furniture, and behaviors are usually ambiguous, need high level cognitive reasoning. 

Figure 11. Examples in different CV benchmarks and the benchmark. 
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2.2. 3. The Complexity and Challenge of Benchmark 

To demonstrate the difficulties of MSEE benchmark, we conduct a set of experiments on a 

typical subset of data using the state-of-the-art deep learning based object detection models (i.e., 

the faster RCNN method) and multiple-object tracking methods. We summarize the results in 

Table. 7. We can see that state-of-the-art individual models perform poorly in the benchmark.  

Table 7.  Top: Summary of the selected subset of data in MSEE benchmark. Bottom: Results 

from detection and tracking. For Detection: AP of all object occurrence is calculated as in 

PASCAL VOC 2012 based on results by Faster R-CNN. For Tracking: MOTA and MOTP are 

calculated as in Multiple Object Tracking Benchmark.  

2.3  Storyline based Queries 

In this section, we first introduce the format of formal language queries and then present the 

collection of queries. To better describe the queries, we give a systematic overview of the MSEE 

system in Figure 12 with details of the joint parsing module to be presented in Section 3.  

2.3.1. Formal Language Queries 

A formal language query is a first-order logic sentence (with modification) composed using 

variables, predicates (as shown by the ontology in Figure 2), logical operators (∧,∨, ¬), 

arithmetic operators, and quantifiers (∃, ∀).  The answer to a query is either true or false meaning 

whether the fact stated by the sentence holds given the data and the system's state of belief. The 

formal language representation eliminates the need of natural language processing and allows us 

to focus computer vision problems on a constrained set of predicates. 

We evaluate computer vision systems by asking a sequence of queries organized into multiple 

storylines. Each storyline explores a natural event across a period of time in a way similar to 

conversations between humans. At the beginning of a storyline, major objects of interest are 

defined first. The vision system under evaluation shall indicate whether it detects these objects. 

A correct detection establishes a mutual conversation context for consecutive queries, which 
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ensures the vision system and queries are referring to the same objects in later interactions. When 

the system fails to detect an object, consecutive queries regarding that object is skipped. 

Figure 12. Illustration of the MSEE system under test (SUT). Top-left: input videos with people 

playing baseball games.  Middle-Left: Illustration of the offline parsing pipeline which performs 

spatial-temporal parsing in the input videos, which we will elaborate in Section 3.  Bottom-Left: 

Visualization of the parsed results.  Bottom-Right: The knowledge base constructed based on the 

parsing results in the form of a relation graph. Top-Right: Example storyline and queries. Graph 

segments used for answering two of the queries are highlighted. 

Object predicates. To define an object, specifications of object type, time, and location are three 

components. Object type is specified by object predicates in the ontology. A time t is either a 

view-centric frame number in a particular video or a scene-centric wall clock time. A location is 

either a point (x, y) or a bounding box (left-top corner point, x1, y1, and right-bottom corner point, 

x2, y2) represented by its two diagonal points, where a point can be specified either in view-

centric coordinates (i.e. pixels) or in scene-centric coordinates (i.e. latitude-longitude, or 

coordinates in a customized reference coordinate system, if defined). For example, an object 

definition query regarding a person in the form of first-order logic sentence would look like: 

∃𝑝   𝑝𝑒𝑟𝑠𝑜𝑛 (𝑝;  𝑡𝑖𝑚𝑒 = 𝑡;  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = (𝑥1, 𝑦1, 𝑥2, 𝑦2))

when the designated location is a bounding box. 

 Attribute and relationship predicates. Attribute and relationship predicates are used to 

explores a system's spatial, temporal, and causal understanding of events in a scene regarding the 

detected objects. The query space consists of all possible combinations of predicates in the 

ontology with the detected objects (and/or objects interacting with the detected ones) being the 
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arguments. When expressing complex activities or relationships, multiple predicates are typically 

conjuncted to form a query. For example, suppose M1 and F1 are two detected people, the 

following query states “M1 is a male, F1 is a female, and there is a clear line of sight (CLOS) 

between them at time t1”: 

𝑚𝑎𝑙𝑒(𝑀1) ∧   𝑓𝑒𝑚𝑎𝑙𝑒(𝐹1) ∧  𝐶𝐿𝑂𝑆(𝑀1, 𝐹1;  𝑡𝑖𝑚𝑒 = 𝑡1).

Note that the location is not specified, because once M1 and F1 is identified and detected, we 

expect the vision system can track them over space and time. 

Moreover, storylines unfold fine-grained knowledge about the event in the scene as it goes. In 

particular, given the detected objects and established context, querying about objects interacting 

with the detected ones becomes unambiguous.  As in the example shown in Figure 12, even the 

ball is not specified by any object definition queries (and actually it is hard to detect the ball even 

if the position is given), once the two people interacting with the ball are identified, it becomes 

legitimate to ask if  “the female catches a ball at time t2”: 

∃ 𝑏 𝑏𝑎𝑙𝑙(𝑏) ∧  𝑐𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝐹1, 𝑏;  𝑡𝑖𝑚𝑒 = 𝑡2),

and if “the male and female are playing a ball game together over the period of t1 to t2”: 

𝑔𝑎𝑚𝑒(𝑀1, 𝐹1;  𝑡𝑖𝑚𝑒 = (𝑡1, 𝑡2)). 

Times and locations are specified the same way as in object definition queries with an extension 

that a time period (t1, t2) can be specified by a starting time and an ending time. 

Correctly answering such queries is non-trivial as it requires joint cognitive reasoning based on 

spatial, temporal, and casual information across multiple cameras over a time period. 

2.3.2. Collection of Queries 

Figure 13. An example of composing queries using our query collection toolkit (developed after 

phase III evaluation, to be elaborated in Section 4). 

The queries in three-phase evaluation are collected by an independent company, SIG. We re-

implement an annotation tool with crowd-sourcing capability. We briefly introduce the 

procedure here with more details to be presented in Section 4. When composing a query, we first 

define and annotate the objects of interests. The annotation tool allows annotators to draw 

bounding boxes and points to refer to specific objects and move the annotated boxes along the 

video timeline to generate a ground-truth track. Tracks from different views can also be 

associated with same identity for collection cross-view tracking ground-truth. After the objects 
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are annotated, we obtain a list of object predicates with groundings. Next step is to compose 

queries by concatenating an arbitrary number of attribute or relationship predicates. Each 

predicate is annotated with a binary label ``true'' or ``false'' indicating whether the objects 

involved in the predicate satisfy the relationship, this serves as the grounding of attributes and 

relationships of objects. To ensure the collected queries are meaningful, we constrain the 

possible choices for each argument of a predicate so that the allowed combinations always 

represent conceptually correct relationships that align with commonsense. This lowers the bar for 

educating annotators and make it possible to adopt this tool to crowdsourcing platforms like 

Amazon Mechanical Turk. Figure 13 illustrates an example of this process. For each query, we 

also collect a ground-truth answer and a sentence that is the natural language equivalent to the 

first-order form.  

Figure 14. Distribution of predicates. 

Currently, we have created 3,426 queries in the dataset. Figure 14 shows the distribution of 

predicates in selected categories. Though we try to be unbiased in general, we do consider some 

predicates are more common in and important than others and thus make the distribution non-

uniform. For example, among all occurrence of object predicates, ``person'' takes 55.9%, which 

is reasonable because human activities are our major point of interest. 

3. System for Test

The system is built on the unified representation --- spatial, temporal and causal and-or graph 

(STC-AOG) developed in Phase I, and is tested extensively on public benchmarks and achieved 

state-of-the-art performances as we showed in publications. We have integrated these 

components into a system according to the Evaluation framework as well as the testing 

framework and videos provided by SIG.  This section summarizes the system.   

3.1. System architecture and interface 

The system consists of three major parts: an offline parsing pipeline which decompose the visual 

perception into multiple sub-tasks, a knowledge base which stores parsing results (including 

entities, properties, and relations between them), and a query engine which answers queries by 

searching the knowledge base. The system also features a flexible architecture and a 

visualization toolkit. 
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(a) A systematic overview of the SUT developed by the UCLA team. 

(b) The detailed architecture of the MSEE system. 
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(c) The vision pipeline system 

Figure 15. The MSEE system. 

The overall architecture of our system is shown in Figure 15.  The system contains four modules. 

I. Evaluation controller is the central component in our system which controls the overall 

workflow, coordinates all other components, and communicates with the evaluation 

execution system from SIG side. It ingest the video input from many cameras over 

multiple scenes. 

II. Scene and event parser is the core component that parses the input videos and is

composed of many vision components. All parsers are partitioned into two groups:

 View-based 2D parsing modules: parsing the scenes, objects, actions and events for each

individual camera view.

 Scene-based 3D parsing modules: 3D scene reconstruction, and multi-view registration,

and estimating the 3D coordinates in the world frame for objects in 2D image views.

Due to the difference in perspectives, 2D parsing information of one object computed from 

one view may conflict with the parsing obtained from another view. Knowledge aggregator 

aims to resolve such conflicts at the finally stage after all views are registered. 

III. Knowledge base and query engine stories the entire pre-computed parse graphs about

the scene in a RDF format and queries this knowledge base using SPARQL scripts. A

query translator is  used to translate formal language queries into appropriate SPARQL

scripts.
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IV. On-line computing modules are called by a query dispatcher and thus compute the

remaining parts of the parse graph which are not computed prior to the query. For

example, whether a person A has a clear-line-of-sight to see an object B, or whether

person A and B are facing each other. Since it would be too computational intensive to

pre-compute all possible relations, we compute them only when they are queried.

Our system is designed to be distributed and cross-platform and runs on a cluster machine with 

48 CPU cores and a large number of GPU units. Since many of the parsing tasks are 

computationally expensive, each individual module can be deployed either on a single computer 

or on a cluster according to its computational cost and performance constraint. It is also possible 

to have multiple modules deployed on the same machine as long as they can be operating 

together efficiently. Figure 16 illustrates the choices of deployment. Such design gives us the 

flexibility to allocate resources. 

Figure 16. Three ways to deploy a module. 

Offline parsing pipeline processes the multiple-view videos. Each view is first processed by a 

single-view parsing pipeline (Figure 15 (b)) where video sequences from multiple cameras are 

handled independently. Then multiple-view fusion matches tracks from multiple views, 

reconciles results from single-view parsing, and generates scene-based results for answering 

questions. To take advantage of achievements in various sub-areas in computer vision, we 

organize a pipeline of modules, each of which focuses on one particular group of predicates by 

generating corresponding labels for the input data. Every module gets access to the original 

video sequence and products from previous modules in the pipeline. The implemented modules 

are described as follows. Most components are derived from the state-of-the-art methods at the 

time we developed the system and are pre-trained on other datasets. 

 Scene parsing generates a homography matrix for each sensor by camera calibration and

also produces estimated depth map and segmentation label map for each camera view.

 Object detection processes the video frames and generates bounding boxes for major objects

of interest.

 Multiple object tracking generates tracks for all detected objects.

 Human attributes classifies appearance attributes of detected human including gender, color

of clothes, type of clothes, and accessories (e.g. hat, backpack, glasses).
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 Human Pose estimation infers the locations of various parts of detected humans, including

hands, arms, legs, foot, etc.

 Action detection detects human actions and poses in the scene.

 Behavior detection parses human-human, human-scene, and human-object interactions.

 Vehicle parsing produces bounding boxes and fluent labels for specific parts of detected cars

(e.g. fender, hood, trunk, windows, and light).

 Multiple-view fusion merges the tracks and bounding boxes from multiple views based on

appearance and geometry cues.

A dashboard has also been built to monitor system status and visualize parsing results. Figure 17 

shows some screenshots on the SIG test scenes. 

(a) Parsing the garden scene: we can test the system by selecting individual modules. 
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(b) The meeting room (the person sitting with green shirt is missed in this example). 

(c) The lobby scene 

Figure 17. screenshots of the dashboards for some scenes in the SIG test videos. 

22
Approved for public release; distribution unlimited.



3.2. Preprocessing of videos 

The videos from SIG are recorded by a network of 30+ cameras over three scene areas: a parking 

area, indoor with 5 rooms (hallway, lobby, meeting room, breakroom/kitchen, lecture hall), and a 

garden area. Before parsing the scenes and events, we compute three components in a 

preprocessing stage so that these videos are registered to a common space and time.  

 Camera calibration: estimating the parameters for 4x4 projection matrices for each camera.

These matrices transform between a pixel in the 2D image coordinates and a point in the 3D

world coordinates.

 Geo-registration: estimating the parameters in a 3x3 homograph matrix by matching the

ground seen by each camera to a common map so that we can track an object across multiple

cameras.

 Time-synchronization: aligning the frames (individual images) of the videos from all cameras

to the same time axis.

3.2.1. Camera calibration 

Figure 18. Camera calibration using known object models.  (left) The fitted vehicle using 

known 3D CAD vehicle model; and (b) The camera calibration tool with estimated 

camera parameters. 

For each camera, we estimate a projection matrix. This 4x4 matrix transforms a pixel in the 2D 

image frame to the 3D world frame.  Traditionally this is done by putting a simple object of 

known shape, such as a checkerboard or a cube in the scene. By waving the checkerboard at the 

beginning of the video, one gets a number of corresponding points (minimum 8 points) to 

estimate the matrix.  This is restricted when the checkerboard is not available. In our project, we 

develop a method to estimate the projection matrix by common objects in the scene, such as a 

human or a vehicle with a known height rather than using the calibration checkerboard. We 

collected accurate 3D CAD vehicle models over 260 different makers and models. Even though 

a specific vehicle in the scene might not be in the vehicle database, the fitting of a 3D CAD 
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model of a similar vehicle would still provide accurate estimates of the camera parameters. 

Figure 18 shows the camera calibration tool and the fitted 3D CAD model of a car in the SIG 

parking lot.  

3.2.2. Geo-registration 

For each camera, we also estimate a homograph matrix. This 3x3 matrix transforms a pixel (i.e. 

2D image coordinate) from a camera view to a point (longitude, latitude) on the common ground 

plane. It is estimated by matching pixels on the ground in an image to the corresponding points 

in the common map. Currently we use the google map for the outdoor areas and using the floor 

plan for indoor areas. To find the corresponding (pixel, point) pairs, we can either match the 

pixels and points with distinct features. When this is not available (e.g. the ground image is flat 

without distinct features), an engineering method is to track a mobile object with GPS unit. The 

pixels of the detected feet of a walking person are matched to his/her GPS coordinate on the map. 

Figure 19 and 20 show the geo-registration of some indoor and outdoor images to the common 

ground maps. During phase II, we also implemented and improved the module for geo-

registration of aerial videos. This is used for the UAV video and MAMI videos that we showed 

in the Q8 report.  

Figure 19.  Geo-registration of three camera views (top) at the parking lot scene.  

(bottom-left) The three pins show the camera positions and the red polygons are the 

ground seen by the three cameras. (bottom-right) More views are registered to the map. 
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Figure 20.  Geo-registration of three camera views inside the building (top). (bottom-left) 

The three colored dots show the camera positions and the polygons are the ground 

viewed at the three cameras. (bottom-right) More views are registered to the floor plane. 

3.2.3. Time synchronization 

Figure 21. (Top panel) Time synchronization using objects appeared on multiple cameras 

(nodes) which have overlapping FOVs. Each row indicates the camera and the time when 

a target appeared in the same geo-location.  (Bottom row) the synchronization results 

between 12 cameras. The value on the edge indicates the estimated time difference of two 

cameras with overlapping FOVs.  
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The videos provided by SIG are not time-synchronized. Since time synchronization is critical in 

multi-view target tracking, we developed an algorithm to estimate the time offsets and frame 

rates of videos from all cameras. From the camera calibration, the overlapping FOVs between 

two cameras are determined after geo-registration. When an object is detected and tracked, its 

footprint (a key point at the bottom of the bounding box) is placed on the common ground plane. 

When they are in the area seen by two cameras, such footprints provide the frames for 

synchronizing the two cameras.  

Figure 21 illustrates the process. We use the tracking results of each camera, and capture the 

appear events on the overlapping area of two cameras.  For example, in the first row of Figure 

21, a person with a red shirt appears on camera HW2 at 4:25, on camera BR3 at 4:32, and on 

cameras BR2 and BR1 at 5:01. When the target is in the area overlap, the time should be the 

same. We continue to record appear events of the red shirted person as well as the time 

differences of the camera pairs. When tracking is over, we collect all time differences and find a 

time offset and a frame rate of each camera to minimize the sum of time differences. This value 

should be zero when the target is tracked perfectly across all cameras. The optimization is done 

by changing the time offset and frame rate of cameras until it converges. The estimated time 

differences between each pair of cameras pairs with overlapping FOV are shown in the last row 

of Figure 21.   

By propagating the time differences among overlapping cameras in the SIG dataset, we can sync 

all cameras as there are overlapping FOVs among these camera pairs.  However, when the 

cameras are not fully “connected” through the overlapping FOV relations, the time difference 

between disappear event of camera A and appear event of camera B need to be recorded over 

time.  Then we can estimate the average time difference for time synchronization.  

3.3. Spatial parsing 

Spatial parsing includes a ranges of tasks in computing the scene-object-parts hierarchy: 

 Parsing 3D scenes as the context for detecting object and recognizing actions;

 Parsing human figures – human detection, pose estimation and attribute recognition;

 Parsing vehicle – detection, pose/view estimation, and attributes recognition; and

 Detecting and recognizing other objects in the scene: animals, furniture etc.

3.3.1. Parsing 3D scenes 

A scene consists of several functional areas for human/vehicle activities, and thus parsing the 

scene into various parts (wall, floor, doors, table, chairs etc.) provides crucial contextual 

information for detecting and recognizing human, vehicle and other object, and for 

understanding their actions and events.  

3.3.1.1 Constructing 3D Scene from a single view 

Traditional method constructs 3D scenes (depth) from multiple views using perspective 

geometry constraints. However, human vision can perceive a 3D scene from a single 2D images. 
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Though this 3D construction may not be very accurate due to ambiguity, it is often sufficient to 

support the reasoning of functionality and actions.  

We have implemented such a module by exploiting commonsense knowledge, for example,  a) 

buildings are standingly upright; b) parallel lines in the world merge at vanishing points in 

images; c) man-made scenes (like a city block) usually observe the Manhattan structure where 

the lines in the scene form the X,Y,Z axes, and so on.  

Figure 22. (a) Input image overlaid with detected parallel ines; (b) segmentation of scene layout; 

(c) synthesized image from a novel viewpoint; (d) recovered depth map (darker pixels means 

closer). 

Figure 22 illustrates one typical result of our method.  Given an input image in Fig.22(a), we 

detect line segments and cluster them in a few groups shown in color.  Line segments in the same 

color are parallel in 3D space and point to the same vanishing point. In this example, there are 4 

colors for 4 vanishing points. In general, three vanish points form a manhantten structure, i.e. a 

3D world coordinate frame.  So, by grouping these colored line segments into coherent 3D world 

frames, we can compute the 3D depth in Figure 22.(b).  To illustrate the 3D depth, we generate 

the scene from a new views and the image is shown in Figure 22.(c).  

The model underlying this method is an attributed and-or graph representation, and Figure 23 

shows the parse graph for a scene.  The And-or graph consists of a number of productions rules 

for how scene structures are decomposed in a hierarchical way. We augmented this graph by 

associating each node in the hierarchy some geometric attributes, which are the respectively.  

 Vanishing points VP associated with the line segments;

 Cartisian coordinate system CCS associated with a local 3D world frame (Manhantten);

 Camera focal length associated with the root for the whole scene.
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Figure 23. Scene parsing with attributed and-or graph (grammar). The right side is the 

parse graph derived from an And-or graph grammar, and the left are the augmented 

geometric attributes, which are associated with nodes in different levels of the parse 

graph. 

We develop an effective top-down/bottom-up cluster sampling procedure to explore the 

constrained space efficiently and compute the hierarchical parse graph by recursively applying 

the grammar rules while preserving the attributes constraints. We evaluated our method on 

public benchmarks and achieved significant performance improvement over the existing methods. 

Figure 24 shows the parsing results on the two SIG scenes one outdoor and the other indoor.  

Figure 24 . Results on the SIG scenes. (left) Input images; (right) Synthesized images 

of the computed 3D scenes from novel viewpoints to show the 3D effects.  

28
Approved for public release; distribution unlimited.



The 3D scene reconstruction is integrated with the geo-registration to provide the scene context. 

Based on the geo-registered map, we can visualize the object trajectories on a common ground 

plane.  Figure 25 illustrate three trajectories (one person walking and two people riding bikes) in 

the parking lot area.   

3.3.1.2. Computing the Clear-line-of-sight and other 3D relations 

The test framework also requests the computation of clear-line-of-sight which is to determine 

whether one person can see another person or object in the scene. This requires the full 3D 

models of all objects/surfaces in the scene.  Other 3D relations, such as “On”, “below”, 

“Occluding” are also implemented based on the 3D reconstructed scene.  We use very coarse 3D 

shapes, such as a 3D cuboid to represent objects in the scene, such as trees, table, chairs, because 

the precise 3D shape is infeasible to infer and time consuming. These 3D relations are computed 

online when they are asked by the query engine.  The performance of this module still needs 

improvements.  

3.3.2. Human figures, body parts and poses 

Our work on and-or graph has achieved state-of-the-art performance on two big public dataset 

for human pose estimation: the UC Irvine PARSE dataset and the Leeds dataset. The results were 

published at CVPR June 2013.  Table 1 below shows the accuracy of the detected body parts 

against human annotated results. Our results are compared against two other top performers in 

the literature. The main difficulty is with the lower arms and lower leg which are often occluded. 

Figure 26 shows some visual results of the pose estimation. 

Figure 25. Tracked object trajectories transformed from the 2D camera view to the 

3D world coordinate frame.  
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Figure 26 Typical detection results on the PARSE and Leeds dataset. Each red bounding 

boxes are the computer detected body parts. The last row shows some failure examples 

where the blue boxes are wrong detections.  The arms and legs are still a challenge.  

The MSEE task includes image sequences that present additional challenges for human parsing 

beyond typical pose estimation benchmarks. In particular, the method must handle prominent 

self-occlusion, and occlusion from external objects such as chairs, tables, and other people. 

Because a large portion of the videos are from indoor scenes. Below is a brief summary of our 

innovations for addressing these problems. 

 Self-occlusion:  In addition to the MSEE training data, we have annotated our own human

pose and attribute dataset, described in the Q6 report, containing 2000 hi-res images

annotated with part labels that include 2.1D depth. These depth annotations are used to

determine if a part is hidden due to self-occlusion, and are used to train additional AND rules

in the grammar. Correctly modeling the occlusion relationships between each pair of parts is

computationally intractable, however, due to the cyclical dependencies that are created.

Instead, the occlusion labels are made dependent only on the local configuration and

appearances of the parts. This allows the grammar to learn better appearances templates and

utilize local dependencies between both visible and occluded variants of each part.
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 External occlusion and multiple output configurations:  Occlusions from external objects

often obscure large portions of the body, which cannot be captured well by the part-based

occlusion productions used in the self-occlusion case. Instead, our and-or graph is redesigned

to also derive partial configurations corresponding to typical occlusion modes, such as when

only the upper body or head is visible. These occlusion modes appear under an OR in the

grammar, and compete with each other to explain the image appearance.

 Activity classification:  Static pose can provide strong evidence for certain activities, such as

standing, sitting, crawling or lying down. The composition rules of the grammar can capture

many of the local cues that are unique to these poses, such as the appearance of a part, its

local geometry, and kinematic behavior between connected parts. By placing top-level rules

in the grammar that are specific to these activities, the grammar can be trained to select the

activity by combining evidence from these cues that come from lower-level compositions.

This training is done under an appropriate loss function that penalizes the incorrect activity

selection.

Figure 27. Some human pose estimation results on the SIG videos: sitting, crawling and riding a 

bike. The results are not perfect, especially for the arms and legs due to heavy occlusions. The 

poses can be also used to assist action recognition. 

3.3.3. Human attributes 

As we reported in Q6, we have collected 4,000 images of human and annotated corresponding 

pose and attributes. Some examples are shown in Figure 28. We have also developed a method 

for human attribute recognition, such as classifying a person as male or female, wearing a hat, 

glass, and the type of clothes and colors. Table 8 below is the performance tested on a public 

dataset against the poselet method by the UC Berkeley vision group. The report was published at 

CVPR 2013. 
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Figure 28. The dataset we collected includes 4,000 examples with human pose and 

attributes annotated.  The body parts and attributes are labeled beyond the SIG evaluation. 

Gender Long 

Hair 

Eyeglass Hat T-shirt Long 

Sleeve 

Shorts Jean Long 

Pant 

Mean 

Ours 88.0 80.1 56.0 75.4 53.5 75.2 47.6 69.3 91.1 70.7 

Poselet 82.4 72.5 55.6 60.1 51.2 74.2 45.5 54.7 90.3 65.2 

Table 8. Human attribute recognition performance evaluation on a public benchmark. 

We have extended our work in two ways to be presented in Section 4.  

 Developing a full attributed and-or graph for human attributes. This model integrates

the appearance attributes, part geometry and their hierarchical structures in a unified

framework. This new model significantly benefits from exploiting contextual information

such as relative geometric position of parts as well as attribute correlation. For MSEE

evaluation, the model has been trained to predict gender, glasses, hat, and color categories of

upper and lower body, according to the evaluation framework.

 Integration attributes information when tracking a person over time. Previous work

infers attributes from a single image. In a video, when a person is tracked over time, we can
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further gather information over time. For example, we cannot infer whether the person wear a 

glass from a rear view, but if the person turns around, we can see his face in the other frame.  

Therefore, we developed a temporal-integration scheme to minimize the uncertainties arisen 

from ambiguous viewpoints or occlusion at individual frames.  

3.3.3.1. Modelling and learning human attributes by attributed and-or graph 

Based on the detected human figure and body parts as we showed in Section 3.3.2, our objective 

here is to further recognize attributes. The attribute model must be compatible and extend the 

and-or graph model for human pose in a principled way. Take gender as an example, both male 

and female have the same number of body parts, and the information must be integrated from 

subtle differences over all parts. Our model integrates the following aspects: 

Figure 29. The attribute and-or graph represents the geometric decomposition and appearance 

types of parts. The global attributes are modeled as control variables which enforce the 

contextual constraints on the local attributes.  The results are in an unpublished technical report. 

 Appearance cues: male and female have different preference in their clothing appearance,

such as texture and color;

 Geometry clues: pose, gesture and hair style (long, short, bald) have subtle difference,

Not a single cue can deterministically decide the gender, we have to aggregate all features in

the parse graph.  Similar to the attributed and-or graph in scene parsing, the attributes are

associated to node in different levels of the and-or graph.

 Global attributes: Gender, race, age, profession etc. are global appearance attributes

associated with the root note (human). Certain distinct poses, such as crawling, crouching,

are global pose attributes associated with the whole body.
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 Local attributes: glass is associated with the face node, long/short hair is associated with

head, jacket is with upper clothes, short/jean are with legs, and high heal is with feet.

In the Attributed and-or graph, the attribute at a node A influences the branching

probabilities of the Or-nodes under node A. Intuitively it acts as a controller. For example, a

female has higher probability to have long hair, skirt, and high heels.   All these terms are

added to the probabilities in pose estimation and the algorithm solves for an optimal parse

graph as the most probable and coherent interpretation of the pose, local and global attributes.

Figure 29 illustrates the model. The right side is the AoG for human body which decomposes the 

human into a set of articulated sub body part. Each part has a number of appearance templates as 

terminal nodes of the hierarchy. The attributes are shown as colored dots associated with 

different nodes in the hierarchy. The global attribute (dark green) is unfolded to show its own 

hierarchy.  

3.3.3.2 Integrating attributes with human tracking module 

Figure 30 shows some examples for why we need to integrate attribute information over time. By 

tracking the person in the video, we can overcome the problem of view, pose and occlusion. The 

sunglass is not visible in some frames but become visible when the person turns his head. The 

blue jean was occluded by the chair in some frame, and then become visible in other frames. Our 

model accumulated the scores for each attribute over the frames. The score is the log probability 

of the attributes in the parse graph.  This step can significantly improve the performance. We 

need to infer attributes from multiple camera views and improve the performance for small 

person in distance and in low-resolution images. 

Figure 30. Because of (a) pose and viewpoint, and (b) occlusion by external object, the 

inference algorithm calculates attribute scores over given time frame, and it puts lower 

weights on uncertain attributes, which is marked by dotted rectangle, and higher weight 

on certain attributes. 

3.3.4. Vehicle, parts, and attributes 

Besides humans, vehicle is the second most important object category in videos. The MSEE task 

for vehicle include car detection, part localization, and attributes (color). Our work has been 

mostly focused on sedan (and less on other sub-categories, like bus, truck etc.). Cars are rigid 

and thus have less variations than humans, but a new challenge is that cars have far more severe 
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occlusions than humans, as they are often parked in high density to save space. Thus our efforts 

in Phase II are aimed to tackle the occlusion issue. During this period, we have published 2 more 

papers on car detection and part localization. Since we have reported the 3D And-Or graph for 

car parsing in previous report, here we only present the recent work on cars in our two papers. 

3.3.4.1. Modeling occlusions between vehicles 

Figure 31. Examples of cars in our street and parking dataset released to the public. 

To handle car occlusion problems, we have collected a large dataset of cars on street and parking 

lots for training and testing. Figure 31 shows some examples.  Occlusion can severely deteriorate 

the detection performance because the occluded parts provides false features to match with the 

compositional templates. To overcome this problem, we extend the car model by explicitly 

representing the occlusion patterns. Suppose a car has 17 parts, each part may be occluded, this 

leads to 217 possible configurations. However, in practice the most frequent occlusion patterns 

are far less.  Figure 32 illustrates the typical car-to-car occlusion configurations which depend on 

the view angles and the other cars around. To model these configurations, we developed a 

compositional and-or graph, which is shown on the right of Figure 18, to account for the 

combinatorial effects and regularity.   

Since it is hard to take images for various occlusion configuration, we use 3D CAD models of 

cars and divide each model into 17 semantic parts. By controlling four factors: car types, 

orientations, relative positions of parked cars, and camera viewpoints, we generate a huge set of 

occlusion configurations. Figure 18 (left panel) shows some of the configurations. In this 

simulated data, we know exactly which parts are occluded. We then use these occlusion maps to 

train an and-or graph for occlusion (see Figure 32, right panel). This And-or graph defines what 

type of combination is plausible.  A parse graph from this and-or graph represents all the visible 

parts and only the visible parts are matched to the templates to resolve the occlusion problem.  
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Figure 32. The and-Or graph for modeling object occlusions. It organizes object parts into 

consistently visible parts in And-node and optional part clusters in Or-nodes. A parse graph is 

composed of the plausibly visible parts for an occluded car. 

Figure 33 Detecting car, estimating 3D pose, and localizing car parts on a public dataset. 

Figure 34. Detection comparison on the KITTI vision benchmark according to their protocol. 

Our results ( Car_Comb_AOG) are reported in the last row in red. Note that we use half of the 

training set, while other tested methods in the benchmark use more training data. 

We obtain the state-of-the-art performance on the popular PASCAL VOC 2007 car dataset and a 

very large public benchmark --- the KITTI Vision Benchmark. We also tested against the 
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PASCAL VOC benchmark on cars and beat the top performers, especially we have much higher 

precision on localizing the car parts. Figure 33 show the results on part localization.  SIG queries 

test car parts like door, roof, bumper etc. The comparison results are shown in Figure 34. 

3.3.5. Functional objects: furniture 

The third big category of objects in daily videos is the functional objects, including chairs, tables, 

desks, doors, water bubblers, cabinets, etc.  Unlike humans and vehicle which are defined and 

detectable by their geometry (shapes, poses, views) and appearance (edges, textures, colors, and 

shading), the concept of furniture is defined by functionality, i.e. how it is used by humans in the 

scene.  For example, a chair or sofa could have many, literally endless, designs of geometry and 

appearance, therefore it is infeasible to define a model and learn it from training example.  We 

developed a new method that reasons the functions of an object by imagine a human figure in the 

scene. This work was published at CVPR 2013 and a long version is accepted by Int’l J. of 

Computer Vision. 

Figure 35.  Understanding scenes and functional objects by reasoning plausible human 

actions. 
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Figure 35 illustrates the method for recognizing objects in the bed room. We extend the and-or 

graph (including the appearance and geometric size) by adding one more layer on the top --- the 

functional space. This layer represents a number of typical scenes, like bedroom, kitchen, and 

each scene has a few actions that people usually do.  For example, a bedroom serves three typical 

actions: sitting (dressing hair, making up face), storing/taking clothes from cabinet, or lying in 

bed.  Each of these actions is further decomposed into a number geometric relations between the 

human pose and the functional objects.   

Figure 36.  Parsing results include cubic objects (green cuboids are detected by bottom-

up step, and cyan cuboids are detected by top-down prediction), planar objects (blue 

rectangles), background layout (red box). The parse tree is shown to the right of each 

image. 

Confusion matrix for the 7 classes of furniture. 

We have built the models from three aspects: 
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 Collecting 3D human poses (skeletons) using Kinect cameras for typical human actions

(sitting, lying, walking etc., see the action section 3.4.3);

 Pooling statistics of the dimensions of furniture from the 3D warehouse of Ikea furniture

which are available online;

 Learning the 3D relations between human pose, body parts with the functional objects using

Kinect cameras (see Section 3.4.3).

Based on these statistics and models, we developed an integrated method for simultaneously

parsing the scene (from 2d images) and reasoning the object functions by imaging possible

human actions.  Figure 36 shows some of the results for indoor scene parsing where the parse

trees are shown on the right side of the 2D images.  And the Table in the previous page is the

confusion matrices between the 7 classes of furniture.  Obviously there are still room for

improvements.

 Using video and thus observed human actions (not imagined) to reason the objects, this was

demonstrated in a restricted setting in our STC-parsing demo video;

3.3.6. Other object categories 

Besides humans, cars, and furniture, there are other object categories. In the SIG video, many 

small objects can often detected through their motion: throwing a ball, leaving a box or backpack.  

In Phase II, we have developed a general and-or graph model and train it using discriminative 

methods. This method beat the state-of-the-art on the PASCAL VOL 20 object categories and 

reported at CVPR13, which is under extension to a journal paper.  Table 9 below shows the 

current detection performance. AOG Disc. is our method and is compared against the deformable 

parts model (DPM release 5).  

Figure 37 shows some successful results of detecting 20 classes of objects and their parts on the 

VOC dataset.  There are still room for improvements in Phase III for this module: 

 Enhancing the features objects;

 Integrating object detection and recognition with human actions in video;

 Modeling better and richer scene context model.
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Figure 37. Detecting objects and localizing parts on the PASCAL VOC dataset. 

3.4. Temporal parsing 

Temporal parsing includes a ranges of challenging tasks in videos across a network of cameras. 

 Tracking objects in long time across cameras in 2D image and 3D world coordinate;

 Human action recognition from poses across varying views;

 Human action recognition based on scene and contextual objects;

 Activities involving humans and vehicle interactions;

 Reasoning human intents, trajectories and events prediction;

 Event recognition through event grammar.

3.4.1. Tracking objects in long videos 

To track multiple objects human, vehicles, animals, balls, packages, bags, and other objects in 

video, we have developed two tracking algorithms corresponding to the following two task 

settings which are commonly studied in the computer vision literature.  

 Off-line Tracking. Given a video clip, the algorithm computes the trajectories of all objects

using all frames in the video. It is called offline, because the algorithm can reason backwards

and forewords in time from each frame.

 On-line Tracking. Given a bounding box for an object at the initial frame, the algorithm must

output the current position at frame t without using the frames after time t.

The tracking algorithm provides trajectories of objects for other applications such as

attributes recognition, action detection and recognition.
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3.4.1.1 Offline Tracking 

In the offline tracking task, we first run the background modeling module to detect the moving 

objects in the foreground, and then on the foreground regions we run various object detection 

modules --- detecting humans, cars, animals, etc. The unrecognized foreground moving blobs are 

often the “other objects”, such as bags, pushed chairs, and unfamiliar objects.  These detection 

modules produce a list of candidates. Figure 38 shows an illustration where each candidate at a 

time frame (horizontal axis) is shown as a yellow circle.  The remaining task is posed as a data 

association problem and can be solved by dynamic programming.  

One complication is to handle the missing or noisy detections, especially when multiple object 

cross each other. We introduce a prior model to enforce trajectory continuity and smoothness and 

to link short fragments into long ones.   

 Figure 38. The horizontal axis is time frame. For each frame a few object candidates 

are detected and shown as yellow circles in each column. By matching and tracing the 

candidates over frames, the algorithm outputs a number of trajectories in colored 

curves. 

 3.4.1.2 Online Tracking and learning 

In the online tracking task, the bounding box of the object of interest is initialized at the first 

frame, say by other modules, or by the user. The tracking algorithm is supposed to output the 

trajectory of the object in the successive video sequence on the fly, i.e. without delay. In online 

tracking task, there are six known challenges: 

 Occlusion, e.g. a person sits down behind a table;

 scale change, e.g. a car drives from far to near;

 illumination change, e.g. an object moves from sunlight to shadow;

 pose change, e.g. a person standing begins to crawl on grass;

 appearance change, e.g. a person takes of clothes or turn around; and

 confusion with similar objects, e.g.  basketball players in the same team.

We developed a framework for simultaneously solving three sub-tasks: tracking, learning and 

parsing, using a hierarchical and-or graph representation.  The and-or graph represents the 
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variations of the object under tracking, and is updated online to learn the geometry and 

appearance of the object. This online learning and tracking is particularly important when the 

object is not pre-trained and unfamiliar. Figure 39 shows the AOGTracker framework. 

AOG Struck CXT VTD VTS OAB CPF LSK FRAG MIL 

Prec. 0.851 0.773 0.658 0.650 0.645 0.604 0.599 0.589 0.582 0.574 

Suc. 0.748 0.694 0.579 0.583 0.581 0.540 0.502 0.556 0.530 0.496 

Table 10. Performance comparison of the top 10 trackers evaluated on the 50-video benchmark. 

We have compared our method (AOG) for online tracking against other methods in a public 

dataset, which includes 100 challenging videos. The result shows our algorithm outperforms 

other state-of-art methods significantly. The numeric numbers are the precision of the bounding 

box compared with the ground truth human annotated by humans.  

Figure 39. Illustration of our online tracking-learning-parsing framework based on the and-

or graph representation. As the object is tracked over time, the algorithm learns an AoG 

representation for its geometry and appearance including the changing pose, view and scale 

etc. 

3.4.2. Human action recognition across multi-views 

In the computer vision literature of video-based action recognition, most existing methods 

recognize actions from the view that is more or less the same as the views in the training videos. 

Their general limitation is the unpredictable performance in situations where the actions need to 

be recognized from a novel camera view. Our research is focused on recognizing cross-view 

actions, i.e., actions from unseen novel views.  
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 We approach this problem from a new perspective: creating a generative cross-view video 

action representation by exploiting the compositional structure in spatio-temporal patterns and 

geometrical relations among views. This model is called Multiview Spatio-Temporal And-Or-

Graph, or MST-AOG.  This new MST-AOG model has the following advantages; 

 It is a compact but expressive multi-view action representation that unifies the modeling of

geometry, appearance and motion.

 Once trained, this MST-AOG model only needs 2D video inputs to recognize actions from

novel views, and no 3D inputs are needed.

 To train this MST-AOG model, we provide new and effective methods to learn its

parameters, as well as mining its structure to enable effective part sharing.

Figure 40. The MST-AOG action representation. The geometrical relationship of the 

parts in different views are modeled jointly by projecting the 3D poses into the given 

view. The discriminative parts are automatically learned and shared for all the actions. 
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Figure 41.  A 3D skeleton information is collected from Kinect cameras and is used in 

training, but not used for cross-view action recognition. The projection of the 3D poses 

enables explicit modeling of the 2D views. Our model uses a set of discrete views in 

training to interpolate arbitrary novel views in testing. 

Figure 40 illustrate a portion of the MST-AOG model, which jointly models the following 

information about the actions: appearance, motion, geometric relationship, and low-resolution 

features. An important property of the MST-AOG is that it shares parts across different views by 

learning a 3D model, so that it can generate projections to new views.  

We train the 3D action model using a dataset captured by depth sensors.  Each action is acted by 

9 people in an indoor scene and simultaneously captured by 3 Kinect cameras from different 

angles.   Then we registered the 3d skeletons from the 3 cameras and produce a 3D skeleton as 

ground truth.   This skeleton produces annotation of the pose and body parts.  Therefore, we can 

project the geometry and dynamics to arbitrary views, as it is shown in Figure 41.  

We create a new dataset, the multi-view 3D event dataset, which contains RGB, depth and 

human skeleton data captured simultaneously by the three Kinect cameras.  We compare the 

proposed MST-AOG method with the state-of-the-art cross-view action recognition methods 

under three settings: cross-subject setting, cross-view setting, and cross-environment setting. The 

experimental results are summarized in Table 11 below. The proposed algorithm achieves the 

best performance under all three settings. Moreover, the proposed method is very robust under 

the cross-view setting. Figure 42 shows the recognition rate of the various action categories. 
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 Method Cross-Subject Cross-View Cross-Environment 

Virtual View 0.507 0.478 0.274 

Hankelet 0.542 0.452 0.286 

Action Bank 0.246 0.176 N/A 

Poselet 0.549 0.245 0.485 

Mixture of DPM 0.748 0.461 0.688 

MST-AOG w/o Low-res 0.789  0.653 0.719 

MST-AOG w Low-res 0.816 0.733 0.793 

Table 11: Recognition accuracy on Multiview-3D dataset 

3.4.3. Human action by scene context 

Scene context plays a very important role in improving action recognition. Some actions, like 

picking, waving, clapping, and boxing, can be recognized by the poses as we discussed in 

Section 3.4.2, but many actions are not. For example, sitting on the chair, writing on a white 

board, drinking, reading, and writing.  In Figure 43, reading and writing can happen by the side 

of table and taking box happens near table. This concept has been discussed in Figure 35 where 

we used imagined human actions to recognize scene and furniture.  Here the information flows in 

Figure 42. The recognition accuracy under cross-view setting. 
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the opposite direction: from scene and furniture to action recognition.  This is a characteristics of 

the MSEE project --- the joint representation supports the joint inferences so that the different 

dimensions: scene, objects, actions and event etc. can help each other to form joint 

interpretations. 

Figure 43.  Some actions need scene context to assist the recognition. Actions have different 

probabilities to occur in certain scenes. 

We utilize two types of context information to help action recognition. 

 One is the scene context which can be seen as the global feature which can provide different

weight for different actions. The weight can be seen as the probability that certain action can

happen in this scene. For example, some actions have high chance to happen in in-door scene

such as taking box, putting box, reading and writing, while other actions always happen in

out-door scene such as running, crawling, eating and throwing.

 Another is object context. The surrounding object of different actions can provide critical

information to action recognition. For example, walking and running usually happen on the

ground, taking box happens near the table, eating can happen on the grass (picnic) or near the

table, and loading happens near the vehicle etc.

In a separate project, we have learned the 3D geometrical relations between human pose and 

body parts with contextual objects in the scenes. Results are reported in two ICCV papers [7, 9]. 

We collected the Kinect RGBD videos for some action categories as we did for the multi-view 

action recognition. Figure 44 shows some of the typical 3D relations. Each objects, like chair, 

desk, book, monitor, button (or switch) on the wall etc. are approximated by 3D boxes. The 3D 

relations are modeled by multi-variety Gaussians and also integrated over time. We call this 

model 4DHOI (4 dimensional human-object interaction). We used this relations to assist action 

recognition, contextual object detection (furniture). Figure 45 shows some comparison results for 

functional object detection using the 4DHOI (Fig.45.(d)) against other methods: HOG + SVM, 

and RDH.  
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Figure 44.  Learning the 3D geometric relations between human poses in action and the 

contextual objects, such as tables, chairs, monitor, mugs, boxes, switch on the wall etc. 

Figure 45.  Object recognition and localization. (a) Ground truth. (b) HOG. (c) RDH. 

(d) Our 4DHOI. The results of RDH and 4DHOI are visualized by projecting the areas 

on the depth images into the 3D point cloud.  
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3.4.4. Activities involving human, vehicles and regions 

Besides the single human actions, the MSEE evaluation framework includes a number of 

activities which are defined by the motion patterns and the interactions between humans, 

bicycles and vehicles. For example, starting, moving, stopping, stationary, turning, turning-right, 

turning-left, u-turn, driving, crossing, mounting, dismounting, loading, unloading, together, 

same-motion, opposite-motion, following, passing, talking, eating (picnic with multi-person).  

Recognizing these activities relies heavily on the tracking of the objects in video, and our method 

overcome the following main difficulties. 

 The motion projected in the 2D image frame lost critical information, we transform the

coordinates in 2D video in the 3D world coordinates. To do so, we track the head of humans

(as feet are often occluded), and estimate the trajectory of the human in the 3D world

coordinate using the projection matrix (camera) and the size of the head.

 Some small objects cannot be reliably detected in video. For example, when people load

some relative small object into the car, this object is difficult to detect without knowing what

it is in advance. Therefore, we resolve this problem by high level reasoning based on their

spatial and temporal interaction.

In the following, we show four typical activities which are defined by a unary or binary relations 

based on their trajectories and speed.  

Figure 46 shows the first example for how we compute the velocity of a person riding a bike. 

The 2D coordinates in the video are transformed to world coordinates on the ground (longitude, 

latitude) from which we estimate the ground speed (see the right panel). The trajectory is then 

divided into three motion statuses: Stationary, Starting, and Moving.  

  Figure 46.  The left panel shows a person on a bicycle with a colored trajectory (color 

represents time) in a garden video. The right part shows the speed of the person at each moment 

based on the trajectory in the left video. Note that colors on the right do not correspond to the 

color of the trajectory on the left. 

Figure 47 is an example for estimating the turning behaviors: turning, turning-left, turing-right 

and u-turn.  As we can see, turning is a gradual and smooth behavior over time and it should be 
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estimated based on a certain time window or time scale. Our answers to such queries are 

probabilistic and parameters are learned to match human intuition of what means turning. 

Figure 47. (Left) colored trajectory (color represents time) of a biker in a parking lot. (Middle) 

the trajectory in world coordinates (longitude, altitude). (Right)  moving direction (angle) of the 

biker.  

Figure 48 shows examples of binary behaviors between two bikers: behind, following and 

passing. At any moment, we estimate their relative position based on their moving direction. 

Then these behaviors are recognized by detecting the changes of their relative positions in 

temporal sequences. 

Figure 48.  The top row shows a video that person P2 follows P1. The bottom row shows 

a video that person P2 passes P1.  

49
Approved for public release; distribution unlimited.



Figure 49 is an example of behavior among multiple person/object: loading and unloading. Here 

two people loaded something to the truck.  

Figure 49. We infer that the two people are loading something instead of unloading something 

based on their relative positions with the car in temporal sequences. 

3.4.5. Human intents, trajectories and events prediction 

In Phase II, we also developed a module analyzing on the UCLA courtyard activities and group 

activities in the aerial video collected by a UAV over Malibu state park. In such videos, the 

human and objects are too small to be recognized, but human trajectories can be computed 

(imperfect). And a good thing is that the trajectories are on the ground coordinate thank to the 

top-view.  Our objective is two-folded: 

 Inferring, through reasoning, the functional objects in the scene, such as, chairs, trashcan,

BBQ stance, vending machine, food truck, picnic table etc. These objects provide certain

functions and attract people.

 Inferring the human intents, such as hunger, thirst etc. and thus predict their trajectories and

events.

For example, in Figure 50, when a person is walking in the scene, we can estimate the 

probabilities for the person to get food from a food truck, entering a building, or get a drink from 

the vending machine etc. The probability is updated over time based on the observed trajectory. 

Based on the probabilities, we can also predict the possible movement.  
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Figure 50.  (Left) A courtyard scene with multiple attractions. (Right) the prediction of 

trajectory (red) for a person based on the observed trajectory (green). 

Our method extends the Lagrangian mechanics in physics and is published in ICCV [2]. Each 

functional object in the scene is modeled as a source that emit a field of attraction (or repulsion) 

in the scene. Thus the scene has many layers of fields. When a person is triggered by a certain 

intent. His/her movement follows the field emitted by that corresponding object, just like a 

particle moving in the field of gravity or electro-magnetism. The motion equation can be derived 

following the Lagrangian mechanics. 

 In a learning mode, our algorithm observes the motion of many trajectories and thus can

learn the type of fields for different categories of functional objects and human people

interact with them.  For example, queueing in front of a food truck.

 In an inference model, our algorithm estimate the human intents and predicts the trajectories.

Our task is different from physics in several aspects, which make the problem interesting:

 Humans can change mind in the middle of the execution a certain action;

 Humans who are familiar with the scene have a “global map” and thus can plan for a globally

optimal path, instead of a greedy path;

 Humans may attract each other and thus become a moving attraction field on their own.

Figure 51 shows the results on four scenes. We show how we estimate the attractions (sources S) 

and obstacles (Constraint C, such as grass, tree where people have to avoid) in a learning mode 

(see the middle panel), and the trajectory predictions in terms of probability (see the right).  
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Figure 51.  Qualitative experiment results for 4 scenes. Each row is one scene. The 1st 

column is the reconstructed 3D surfaces of each scene. The 2nd column is the 

estimated layout of obstacles (the white masks) and attractions (position are estimated 

by ellipses). The 3rd column is an example of trajectory prediction, we predict the 

future trajectory for a particular agent at some position (A, B, C, D) in the scene 

towards the potential attractions, the warm and cold color represent high and low 

probabilities of visiting that attraction respectively. From [2]. 

3.5. Query answering 

The Query Engine Module is implemented by our team members in IAI for the MSEE evaluation. 

We have developed two versions of the query engine:  

 One version answers the questions on what, who, where, when and why; this was illustrated in

our demos. 

 The other version answers the yes/no binary questions designed by SIG according to the

restricted Turing tests. 

Both query versions support the storylines and probabilistic answers (with uncertainty). 

The MSEE system is designed to consume Scene Observation Collections (SOCs), which 

include sensor data (with metadata) from multiple sensor sources along with scene descriptive 

text recorded in an area of responsibility (AOR). Based on these inputs, the MSEE system 

performs joint spatial and temporal parsing and reasoning, as we discussed in previous Sections. 

52
Approved for public release; distribution unlimited.



The product is a Joint Parse Graph that describes the predicates (labels, states, and relations) 

detected in the AOR.  

To evaluate the accuracy, the MSEE system provides an interface for a user or an evaluation 

engine (assessor) to ask true/false queries. For example, it might ask whether there are at least 

two feet in the reception room at 15:01:43 on 9-4-2013. The system then computes the most 

probable answer to the query along with a confidence score between 0 and 1, which is intended 

to estimate the probability that the answer is correct. 

A Query Engine module is being developed to retrieve answers for the queries issued by the 

MSEE Assessor. This module can currently derive the answers to many queries based on 

information in the Joint Parse Graph.  

The architecture of the Query Engine module is shown in Figure 52. It consists of four main 

components: 

 A Query Translator that convert query from an XML form to a SPARQL form.

 Jena Query Engine that interfaces with the JENA SPARQL API to execute the query on the

RDF data, and executes special JAVA functions to handle spatial-temporal conditions.

 A Probabilistic Post-process module that integrates results from multiple parsed graph

interpretations.

 An Answer Interface that outputs the result to the MSEE assessor.

Figure 52. The architecture of the query answering engine for MSEE tests.  The query 

engine (at the core) includes four components.  The online C++ computation module 

extract certain relations asked by the query which are not pre-computed in the joint parse 

graph.   
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3.5.1. Data structures for the database 

There are four main sets of data required by the Query Engine Module to answer queries: 

 Scene Observation Collections (SOC) – this is a metadata of the sensor data, including

sensor identifier, time-stamp, frame-rate, and calibration information.

 MSEE Ontology (MSEE.owl) – this is the ontology of general knowledge base describing

the taxonomy of entities (objects, events), and relations between entities (e.g. supertype-

subtype relations).

 Joint Parse Graph – this is the result of video parsing represented in RDF format.

 Space-Time data for objects and events – this consists of time-stamped world coordinate

positions of the trajectories of objects and events.

3.5.1.1. Parse graph represented as RDF 

A parse graph can be represented as a Resource Description Framework (RDF) data model --- 

one of the standard knowledge representations in the semantic web. SPARQL is the standard 

language for querying RDF data. In the RDF data model, each statement has a triple format: 

subject-predicate-object. The collection of these statements intrinsically represents a directed 

graph. Therefore, the RDF is able to represent the video Joint Parse Graph naturally and allows 

the data to be queried via SPARQL. 

3.5.1.2. Space-time data 

This dataset consists of time-stamped positions of objects and events in and scene, based on the 

result of object tracking and event analysis modules. Some of the queries require online 

processing of tracking data. An example of such a query is: “did the car passes the person?” 

Since such a query can be asked for any two objects in the scene, it can be prohibitively 

expensive to analysis every pair of objects to determine whether there is a passing event.  Hence, 

an online computation is preferred, such that passing event inference is made only in response to 

a query. Similarly, a location-related query, such as “is there a talking event in location-A?” can 

only be answered online by examining the object/event positions with respect to the location 

specified in the query. Therefore, to answer these types of queries, the Query Engine needs to 

assess the object and event space-time data. 

3.5.2. XML to SPARQL translator 

To evaluate our system’s ability to interpret the information obtained by the cameras, we 

provided with true/false queries in a restricted language defined in the FLS document. These 

queries are presented in an XML format specified in the ICD document. In order to obtain the 

answer to the query from the information that we have derived from the sensors, which is RDF 

data and tracking data, we convert the query into a format called SPARQL 

The process of the XML to SPARQL Translator module, which translates the incoming XML 

query into a functionally equivalent SPARQL query, is as follows: 
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1) Generate the SPARQL “PREFIX” statements.

2) Translate the time definitions from XML to SPARQL.

3) Translate the location definitions from XML to SPARQL

4) Translate the set definitions from XML to SPARQL.

5) Translate the event definitions from XML to SPARQL.

6) Translate the XML query statement into SPARQL.

3.5.3. Jena SPARQL engine 

Jena is an open-source Java framework for building Semantic Web applications, and ARQ is a 

query engine in Jena that supports the SPARQL query language. The translated queries in 

SPARQL forms are passed to the Jena ARQ library to answer the queries. The solution is 

retrieved based on graph pattern matching, by comparing the query triple conditions with the 

RDF data.  

3.5.4. Query interface 

The Query Engine Interface affords a standard means for accessing the Query Engine during 

evaluation.  As Figure 53 shows, the evaluation process is defined (hierarchically) in terms of 

scene observation collections (SOCs), storylines and queries.  Thus, the interface provides 

methods for starting a new SOC, for resetting state between storylines within a given SOC, and 

for making queries for a given storyline.  Note that two query methods are provided, allowing 

queries and results to be stored either in memory or on disk.  In either case, a given query is 

automatically translated from XML to SPARQL, prior to execution. 

Figure 53. Structure of SOCs, storylines, and queries.  This figure was obtained from 

the MSEE EES-SUT Interface Control Document (ICD), Version 1.1. 
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At present, the Query Engine Interface methods are invoked by one of two modules.  In the 

integrated MSEE system, the methods are called by the MSEE SDK.  However, they can also be 

called by a specialized Unit Tester module. 

3.6 Evaluation Results and Analyses  

3.6.1 Overall Results 

Table 12.  Number of queries by category. The number of predicates used in each query can 

serve as a proxy for complexity of the query. Number of predicates is not a perfect measure of 

the complexity of a query because not all predicates are equally complex, and other factors affect 

query complexity (such as the size of the temporal and spatial windows that must be considered 

in answering the query). 

The SUT is evaluated by a 3rd party company, SIG. We report the phase III evaluation results 

and analyses in this section.  There are 1,160 polar queries as listed in Table 12. During the 

evaluation, our system did not utilize the ground-truth answers after answering each query for 

consecutive queries. Among the 1,160 queries, 243 queries are object definitions, 197 (81%) of 

which are successfully detected (which outperforms the state-of-the-art deep learning methods as 

shown in Table 2). For non-definition queries, we either provided binary ``true/false'' answers or 

claimed ``unable to respond'' (when our implementation cannot handle or recognize some of the 

predicates involved in a query).  Table 13 shows the accuracy as the ratio of correctly answered 

queries to number of the responded non-definition queries. 

Table 13. Performance by data collection in Phase III evaluation by SIG. 
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Figure 54 further breakdowns the accuracy by the category of predicates and the number of 

unique predicates in a query. Most queries have either one, two, or three predicates. This is a 

natural result of the choice to avoid overcomplicating the queries. Queries with one predicate 

focus on various types of objects (people, car, etc.): most of these queries (243) are object 

definitions; the others (46) are about counting (e.g., ``how many people are in the scene?''). 

Queries with two predicates mostly involve attributes and properties of single objects: one 

predicate of the two is used to define the object (usually person or automobile), the other unary 

predicate focuses on attributes. Queries with three predicates focus on binary relationships 

operating on two objects: two predicates are used to define the operands and the third predicate is 

for relationships. The results reveal that our prototype system performs well in object detection 

tasks but requires more future work for correctly answering complex queries regarding spatial 

reasoning and interactions between entities. 

Figure 54. Results breakdown. Left : accuracies by the category of predicates. Right: accuracies 

by the number of unique predicates in a query. 

Typical results are shown in the following figures for several SOCs.  

 The 2D images on the top show the camera views and are augmented with bounding

boxes for detected objects (Human, vehicles, animals etc) with attributes.

 The 3D scene visualizes the icons of humans, vehicles together with the actions, events,

and 3D relations between them.

 For the mobile cameras, we estimate their Field-of-View (FoV) over time, and registered

to the ground plane. Then we further estimate the position of the objects capture in the

FoVs, and register these objects in the ground plane.
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Figure 55. The parking lot scene with a moving camera (the upper left) mounted on a vehicle. 3D 

space and time parsing the scene and events by integrating images from multiple cameras. 

Figure 56. The garden scene. 3D space and time parsing the scene and events by integrating 

images from multiple cameras. 
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Figure 57. The auditorium scene. This includes the IR camera (the 5th on the top row).  3D space 

and time parsing the scene and events by integrating images from multiple cameras. 

3.6.2 Evaluation Timeline 

On April 3rd, 2015 the Phase 3.0 Testing Data stored on an external hard disk drive was shipped 

to UCLA, DARPA, and AFRL, with an expected arrival date no later than April 6th. UCLA was 

allotted two weeks to perform data preprocessing required by their SUT. Table 6 provides details 

on the preprocessing performed and the associated time durations, as reported by UCLA. BAE 

Systems exposed the EES interface for Phase 3 Evaluation on 12:01 AM EDT April 20, 2015. 

UCLA started its lone EES session at 5:30 PM EDT on April 21, and completed it at 8:55 PM 

EDT on April 28. After processing the queries associated with the first SOC, “soc-sig-office-

2013-09-04-testing”, UCLA paused the evaluation at 11:52 PM EDT on 4/22/15 to address 

interfacing and other SUT issues. Note that the “soc-sig-office-2013-09-04-testing” SOC is not 

part of the Phase3 testing data sets. UCLA resumed the evaluation at 3:27 AM EDT 4/26/15 and 

completed the evaluation at 8:55 AM EDT 4/28/15. More details are referred to the SIG reports.  

Table 14 shows the log of processing time. Note that the run time was logged in phase III testing 

(HD videos 1920*1028 with intensive activities). Some modules used 80 CPU cores (including 

detection, tracking). The run time of detection is proportional to the size of a frame, and the run 

time of remaining modules (tracking, attributes and actions, etc.) is proportional to the number of 

total object instances. In our on-going work after phase III, we are refactoring our code. Some 

modules are re-implemented using GPUs. E.g., object detection module can run in real time 

using a NVIDIA GPU (Titan or K40).    
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Table 14. Summary of UCLA SUT Data Processing. 

3.6.3 Performance Analyses 

Table 15 shows the performance of the UCLA SUT broken down by SOC. “Object definition” 

queries are excluded from the metrics reported in this table. Note that the “SIG-Office 2013-09- 

04” SOC was used in the Phase 2.2 evaluation, though the queries presented in the Phase 3 

evaluation are new. Note that object definition queries are not included in these results. 

Table 16 summarizes performance metrics for sets of queries based on the number of predicates 

used in the query. Intuitively, we expect queries with more predicates to be more complex and 

therefore to have higher error rates. Once again, object definition queries are excluded from these 

results. 

60
Approved for public release; distribution unlimited.



Table 15.  Performance metrics by SOC. 

Table 16. Performance by number of predicates. 
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3.6.4. Summary of the failing conditions 

In general, the major failure cases in Phase III test can be divided into five reasons. 

i. System coding and predicate definition issues.   There were some bugs during the

online computing process.

ii. 3D cross camera fusion. This module is newly added for Phase III, and was not accurate

enough. This caused a certain portion of errors.

iii. 3D pose and relations. The estimation of 3D human pose is not accurate to answer

questions in 3D, such as a person touching another person or object. The 3D relations in

indoor scenes are also unreliable due to heavy occlusions by furniture.

iv. Recognition in very low resolution. This causes a large portion of the mistakes in

answering queries. Some cases can be resolved by long-range spatial and temporal

contextual information or model.   For example, when you detect a person is probably

drinking in one time, and then we can infer his hand must hold a cup, bottle or a soda can.

Figure 58. Some examples of failure. 

Figure 58 shows some examples of failure. We address some of the issues after Phase III test. 

62
Approved for public release; distribution unlimited.



4. New Developments after Phase III Test

After Phase III evaluation, we continued to improve the system under test (SUT). We developed 

a new web-based query-answering interface which substitutes the stand-alone module developed 

by SIG in the evaluation. We improved the performance of several vision muddles in the parsing 

pipeline. We developed a new graph knowledge database for storing parsing results and more 

efficient query answering.  

4.1. A Web-based Query-Answering Interface 

The interface is shown in Figure 54 to Figure 56.  On the top, we show the view-based parsing 

results (4 views in the garden scene in the figure), which include results from object detection, 

human, pose parsing and human attribute recognition, action and event detection and parsing, etc. 

On the bottom, we have several functional tabs:  

 Object identification interface, which allows users to initialize a storyline query by defining

an object in one view through a 2D bounding box or a 2D point.

Figure 54. Object identification interface. 

 Query interface, which allows users to compose ontology-guided queries quickly. Queries

can attribute-based predicates or multi-object relationship based composite queries in single

view or multiple views and/or across time.
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Figure 55. Ontology-guided query-composing interface. 

 Visualization interface, which shows 3D scene based results (on the left) and query results

(on the right), as shown in the bottom figure. (iv) Query debugging interface, which shows

all the intermediate results during the query-answering process.

Figure 56. Visualization interface. 

We developed an efficient method of composing queries with the guidance from the MSEE 

ontology.  First, we represent the MSEE ontology by a graph as illustrated in Fig 57.  
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Figure 57. The ontology graph. For clarity, only a partition of the full graph is shown. 

The ontology graph encodes what we can ask in the visual Turing test, which can be learned 

from the ConceptNet and different generic knowledgebase such as the Freebase, as well as 

domain-specific expert knowledgebase. Fig. 58 shows examples of automatically generating 

queries through random walk in the ontology graph.  Fig. 59 shows an example of mapping 

queries created by users into the ontology graph so that a computer can understand what a user 

talk about.  

Figure 58. Illustration of automatic query generation as random walk in the ontology graph. 

65
Approved for public release; distribution unlimited.



Figure 59. Illustration of mapping user created queries (left) into the ontology graph. 

4.2. Improved Vision Modules 

4.2.1. Multi-view Multi-object Tracking with 3D cues 

We developed a hierarchical composition approach for multi-view object tracking. As illustrated 

in Fig. 60, the key idea is to adaptively exploit multiple cues in both 2D and 3D, e.g., ground 

occupancy consistency, appearance similarity, motion coherence etc., which are mutually 

complementary while tracking the humans of interests over time. While feature online selection 

has been extensively studied in the past literature, it remains unclear how to effectively schedule 

these cues for the tracking purpose especially when encountering various challenges, e.g. 

occlusions, conjunctions, and appearance variations. To do so, we propose a hierarchical 

composition model and re-formulate multi-view multi-object tracking as a problem of 

compositional structure optimization. We setup a set of composition criteria, each of which 

corresponds to one particular cue. The hierarchical composition process is pursued by exploiting 

different criteria, which impose constraints between a graph node and its offsprings in the 

hierarchy. We learn the composition criteria using MLE on annotated data and efficiently 

construct the hierarchical graph by an iterative greedy pursuit algorithm.  
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Figure 60. An illustration of utilizing different cues at different periods for the task multi-view 

multi-object tracking. suppose we would like to track the highlighted subject and obtain its 

complete trajectory (e). The optimal strategy for tracking may vary over space and time. For 

example, in (a), since the subject shares the same appearance within certain time period, we 

apply an appearance based tracker to get a 2D tracklet; in (b) and (c), since the subject can be 

fully observed from two different views, we can group these two boxes into a 3D tracklet by 

testing the proximity of their 3D locations; in (d), since the subject is fully occluded in this view, 

we consider sampling its position from the 3D trajectory curve constrained by background 

occupancy. 

Fig. 61 shows the proposed hierarchical compositional structure. Figure 62 shows the ideas of 

finding feasible regions (polygons) for interacting people.  
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Figure 61. An illustration of the hierarchical compositional structure. 

Figure 62. An illustration of finding feasible regions (polygons) for interacting people. 

4.2.2. Joint Inference of Human Attributes and Poses 

We developed a model for joint inferences of pose and attribute. The proposed algorithm has two 

properties. 
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 Explicitly representing the decomposition and articulation of body parts, and account for the

correlations between poses and attributes in a common framework (A-AOG);

 Providing robust system to handle data with large variation of appearance and geometric,

heave occlusion, and truncation.

To achieve the first objective above, we design a unified framework to infer attribute and

pose simultaneously. Most existing methods train models separately for each of these two

tasks attribute classification and pose estimation, and combine the inference sequentially, e.g.

first do pose estimation, then use the detected part locations to recognize the attribute. The

main problem is that the attribute recognition deteriorates if the part locations are not

detected correctly, so most previous methods need the ground-truth bounding box of the

target person during testing. The inference process of our approach is illustrated in Figure 63.

Figure 63. illustration of the unified inference of attribute and pose 

To infer attribute and pose from an input image, we (1) first generate the part proposals by using 

a deep part proposal network; (2) compute the likelihood of each part-attribute combination at 

each proposal region using the deep part-attribute network; (3) integrate the part and attribute 

into an attributed hierarchical structure; and (4) infer pose and attribute efficiently and 

simultaneously by using dynamic programming.  

To achieve the second object above, we propose a new way to design and propose parts. In 

previous pose-estimation approaches, people annotate the parts or draw the bounding box with 

same scale and aspect ratio, however, these approaches showed limitations when data has large 

variations of appearance and geometric, heavy occlusion, and truncation. To overcome this, we 

design the way to design parts according to the proposals and joint annotations.  
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Figure 64. (a) generation of part proposals. (b) part design in previous methods and our method. 

As shown in Figure 64. (a), we first generate part proposals from input image, and define the part 

labels of proposals by computing the distance between annotated joints and centers of proposals. 

We compare parts in our approach and and previous approaches in Figure 64. (b). Our parts have 

large number of different scales and aspect ratios compared to other methods thus we are more 

robust to large pose variation and heavy occlusion. 

To evaluate our model, we test our model on popular attribute classification benchmark Poselet 

Attributes of People dataset, and we achieve state-of-the-art performance. 

Table 12. Comparison of attribute classification on Attributes of People dataset. 8.L  and 16.L 

indicate 8 layer and 16 layer CNN model respectively. 

All the methods above the double horizontal line use the ground-truth bounding box of the target 

person at test time, and the methods below are tested without ground-truth bounding box. We 

can achieve the best mean average precision among the other methods with the same number of 

layers of deep network, also the joint model (Ours w pose) can improve the model without pose 

(Ours w/o pose) around 3 percent which demonstrates the strength of our joint modeling of the 

two tasks. 
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4.3. A New Graph Database for Knowledge Representation 

We adopted as backend a new state-of-the-art graph database – Neo4j mainly due to 

• Multiple modules perform graph operations e.g. in video/text joint parsing, dialogue

management, planning

• Many graph operations are common across modules, e.g.

• Create or modify graph nodes and edges

• Search data based on graph patterns

With Neo4j, we aim at the following three objectives: 

• Standardize graph data representation for all modules, e.g. representation of object,

event/task, attribute and relation

• Provide a single graph database as a shared workspace for all modules to store and exchange

information

• Provide a common API for efficient high-level graph operations

Neo4j graph database has several desirable properties:

• Highly scalable open source graph database

• Most popular graph database in-use today

• Query using Cypher query language which is intuitive for graph pattern matching

• API support for Java and Python
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Figure 65. An example of data importing to Neo4j graph database. 

    We used Neo4j database as the software representation layer for knowledge representation and 

robot learning. We developed a Java-based “SIMPLEX GraphDB API” for high-level graph 

operations. We also developed common querying and visualization user interfaces. Figure 65 

shows an example of data importing to Neo4j. The graph operations of interests in this project 

include: 

• Data manipulation

• Create, modify, delete graph node, edges and attributes

• Search and Query

• Search for data using graph patterns

• Spatial and temporal reasoning to answer queries

• Co-reference

• Matching of entities across different domains, e.g. text, video

• Merging

• Merging multiple sub-graphs to form a joint graph, e.g.

o Joint video-text parse graph

o A temporal And-Or graph from multiple video parsed graph
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• Important for generalization

• Analysis

• Checking for consistency

• Concept and rule discovery

    As illustrated in Figure 66, the graph operations can be implemented by the Cypher graph 

query language provided by Neo4j, which is a declarative and SQL-inspired language for 

describing patterns in graphs and uses syntax that looks like graph pattern.  

Figure 66. Illustration of the Cypher graph query language in Neo4j. 

    To leverage the parsing pipeline demonstrated in MSEE, we developed a VEML-to-Cypher 

conversion module for parsing natural language questions to Cypher query, as is illustrated in 

Figure 67.  

Figure 67. The VEML-to-Cypher conversion. 

    Figure 68 shows an example of querying the Neo4j graph database.  
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Figure 68. An example of querying Neo4j graph database. 
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